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Intermetallic hydrides (IMHs) are of interest for use
as the base of hydrogenation catalytic systems, in partic-
ular, for Fischer–Tropsch synthesis. Intermetallic
hydrides per se are not catalytically active. They acquire
such activity when subjected to oxidation–reduction
treatment (ORT) as a result of the segregation of one of
their metals during ORT. The resulting metal nanoparti-
cles are the catalytically active component [1].

Hydrides ZrCoH

 

x

 

 deserve special consideration.
First, cobalt-base Fischer–Tropsch catalysts are most
selective to C

 

5

 

 and higher liquid hydrocarbons. Second,
nonstoichoimetric ZrO

 

2

 

 is the promoter for some
cobalt-base catalytic systems supported on Al

 

2

 

O

 

3

 

, SiO

 

2

 

,
or TiO

 

2

 

. Third, the hydride system is conserved under
sufficiently mild ORT parameters; for this reason,
IMH-base catalysts have unique properties, such as the
nonexistence of surface carbonization and the high con-
centrations of active surface hydrogen.

In order to prepare Fischer–Tropsch catalysts with
definite cobalt grain sizes, one needs data on the kinet-
ics of ZrCoH

 

x

 

 oxidation, the dynamics of cobalt metal
segregation, and the resulting metal particle sizes. In
this context, here we studied the magnetization and
dynamics of hydrogen removal during the oxidation of
ZrCoH

 

x

 

 samples, either intact or after hydrogen ther-
modesorption.

EXPERIMENTAL

A ZrCoH

 

1.5

 

 sample (0.023 g) was placed in a
microreactor, which also served as the cell of a vibra-
tional magnetometer. The magnetometer was calibrated
against a high-purity cobalt sample. Magnetization was
assumed to be proportional to the cobalt metal weight.

The microreactor was connected to a heat conduc-
tivity detector in order to continuously measure the gas
composition at its outlet. The working gases used were

argon (high purity grade), hydrogen free from trace
oxygen and water, and O

 

2

 

 + Ar (5/95).

RESULTS AND DISCUSSION

The ZrCoH

 

1.5

 

 oxidation kinetics were studied as fol-
lows. First, the hydrogen evolution rate and magnetiza-
tion for ZrCoH

 

x

 

 were studied in an Ar flow and in an
O

 

2

 

 + Ar (5/95) mixture at a heating rate of 0.5 K/s
(Figs. 1, 2).

Intermetallic compound ZrCo has a CsCl-type cubic
lattice. Its lattice expands during hydriding along one
axis, and ZrCoH

 

x

 

 with 0.3 < 

 

x

 

 < 3 crystallizes in an
orthorhombic lattice. Four asymmetric octahedral
voids and eight symmetric tetrahedral voids appear in
the unit cell. There are four formula units in the ZrCoH

 

x

 

unit cell, and thus hydrogen atoms occupy all voids in
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—Continuous in situ magnetization measurements are used to study the dynamics of processes in the
Zr–Co–H system during oxidation–reduction treatment (ORT). The oxidation of a ZrCoH
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 sample after
removal of hydrogen results in a significant rise in magnetization. ZrCoH

 

x
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2
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Fig. 1.

 

 (

 

a

 

) Hydrogen removal rate and (

 

b

 

) magnetization vs.
temperature for ZrCoH

 

1.5

 

 in an argon flow.
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ZrCoH

 

3

 

. The hydrogen atoms enclosed in octahedral
voids are the first to leave during heating (as demon-
strated by both calculations and experiments [2]); the
first peak of hydrogen evolution at 340

 

°

 

C is due to this
process (Fig. 1, curve 

 

a

 

). Then, hydrogen atoms leave
tetrahedral voids with the second peak appearing at
415

 

°

 

C. The resulting metastable triclinic ZrCoH starts
to disproportionate as

2ZrCoH  ZrCo

 

2

 

 + ZrH

 

2

 

.

ZrH

 

2

 

 decomposition starts only at 515

 

°

 

C (the third
peak) and ends only above 600

 

°

 

C. Thus, the full dehy-
drogenization produces metallic zirconium and a very
stable ZrCo

 

2

 

 Laves phase [2].
A weak rise in magnetization can be due to residual

oxygen in argon (Fig. 1, curve 

 

b

 

). Removal of hydrogen
by an O

 

2

 

 + Ar (5/95) flow and the subsequent oxidation
of the intermetallic compound (Fig. 2) bring about a far
higher rise in magnetization as a result of the oxidative
segregation of metallic cobalt. The formation and
growth dynamics of cobalt metal particles was studied
in the following set of experiments: a sample was
heated to a certain temperature (point 

 

1

 

, 

 

2

 

, 

 

3

 

, or 

 

4

 

 in
Fig. 2) in an O

 

2

 

 + Ar (5/95) flow; then, it was cooled to
room temperature in an argon flow. For each point,
magnetization was measured as a function of field and
the coercive force 

 

H

 

c

 

, residual magnetization 

 

σ

 

r

 

, and
saturation magnetization 

 

σ

 

s

 

 were found by extrapola-
tion to 

 

H

 

  

 

∞

 

.
The suggested scheme of ZrCoH

 

x

 

 oxidation is

ZrCo

 

x

 

 + O

 

2

 

  ZrO

 

2 – 

 

δ

 

 + Co + H

 

2

 

O + H

 

2

 

.

The exponential rise in magnetization during the
initial oxidation stage at temperatures from 200 to
300

 

°

 

C can be explained by the decomposition of the
hydride and the nucleation of metallic cobalt. The rise
in the coercive force from point 

 

1

 

 to point 

 

3

 

 is due to the
fact that single-domain cobalt crystals are first formed

 

(Fig. 3). The critical single-domain diameter for cobalt
particles with uniaxial anisotropy is 20–25 nm [3]. The
particles are grown and coarsen as hydride oxidation
progresses; the coercive force increases with increasing
mean particle size.

The rise in the coercive force from point 

 

3

 

 to point 

 

4

 

can be interpreted as follows: Co

 

met

 

 particles are formed
and grown at the initial oxidation stage until tempera-
ture reaches 500

 

°

 

C; then, they oxidize and agglomer-
ate; cobalt crystallites are in the single-domain region,
and the mean particle diameter decreases and the coer-
cive force rises in the progress of oxidation. It is known
[4] that, provided that the system is in the single-
domain region, the proportion of superparamagnetic
particles is determined by

Here, 

 

σ

 

r

 

 is residual magnetization and 

 

σ

 

s

 

 is satura-
tion magnetization.

Keeping in mind that the system is in the single-
domain region, we calculated the proportion of super-
paramagnetic particles for points 

 

1

 

, 

 

2

 

, and 

 

3

 

 (Table 1).
The proportion of superparamagnetic particles

decreases in the progress of oxidation; at 7

 

°

 

C, the lim-
iting size of cobalt superparamagnetic particles is
6.4 nm.

In the second set of experiments, hydrogen was first
removed from ZrCoH

 

1.52

 

; as a result, a stoichiometric
mixture of zirconium and ZrCo

 

2

 

 (contact [Zr + ZrCo

 

2

 

])
was formed. Magnetization rose more significantly
during oxidation in these experiments (Fig. 4). Here, as
in the first set of experiments, the sample was heated to
a certain temperature and cooled to room temperature
in an argon flow, after which the hysteresis loop was
measured and 

 

H

 

c

 

, 

 

σ

 

s

 

, and 

 

σ

 

r

 

 were found. The results of
the calculations are listed in Table 2.
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Fig. 2.

 

 (

 

a

 

) Hydrogen removal rate and (

 

b

 

) magnetization vs.
temperature for ZrCoH

 

1.5

 

 in an O

 

2

 

 + Ar (5/95) flow.
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Fig. 3.

 

 Qualitative illustration of the coercive force vs. par-
ticle size.
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The most interesting detail is the higher magnetiza-
tion of the oxidized contact [Zr + ZrCo

 

2

 

]

 

ox

 

 compared to
that of the oxidized precursor hydride [ZrCoH

 

1.5

 

]

 

ox

 

 at
temperatures above 500

 

°

 

C. A likely interpretation of
this detail is as follows: ZrCoH

 

1.5

 

 oxidation first pro-
duces finer cobalt crystallites, which then fully oxidize.
In the case of [Zr + ZrCo

 

2

 

] (in the absence of the
hydride system), coarser cobalt particles are initially
formed (the system is in the single-domain region
except for the initial oxidation stage); these coarser par-
ticles do not burn up, because the oxide film stops to
grow after reaching a certain thickness. Accordingly,
the metal-cobalt proportion and magnetization increase
as the temperature rises.

The oxidation kinetics of ZrCoH1.5 and [Zr + ZrCo2]
by air were studied in the same manner (Fig. 5). The
oxidation of ZrCoH1.5 by air radically differs from the

oxidation by O2 + Ar (5/95): magnetization dramati-
cally increases at 275°C because of the instantaneous
burning up of all hydride and the elimination of metal-
lic cobalt (some 35% of the possible amount; the rest
65% cobalt is oxidized during hydride burning). The
subsequent reduction of [ZrCoH1.5]ox in a hydrogen
flow leads to the twofold rise in magnetization (about
70% of the total cobalt is the metal). The coercive force
measured for contact 2 (204 Oe) indicates that the sys-
tem is possibly in the single-domain region and the
cobalt particle sizes are comparatively large. The sub-
sequent air oxidation of contact 2 induces a drop in the
magnetization, which asymptotically approaches the
magnetization of [ZrCoH1.5]ox. The cobalt proportion
oxidized during hydride burning was apparently
enclosed in the ZrO2 matrix and was not accessible to a
hydrogen flow for reduction.

The oxidation kinetics of [Zr + ZrCo2] in air do not
differ from the oxidation kinetics of [Zr + ZrCo2] in
O2 + Ar (5/95).

The oxidation of [Zr + ZrCo2] in O2 + Ar (5/95)
induces a more significant rise in magnetization than
the oxidation of precursor ZrCoHx (Fig. 4). We can
explain this fact as follows: oxidation first produces
larger cobalt particles, which subsequently oxidize by
the Cabrera–Mott mechanism and whose oxidation is
controlled by oxygen diffusion above 450°C (with the
oxidation rate being independent of the oxygen concen-
tration). Accordingly, a significant proportion of cobalt
remains in the metallic state. During the oxidation of
the precursor hydride by O2 + Ar (5/95), cobalt nucle-
ation and oxidation progress; the process being

Table 1.  Magnetic parameters of [ZrCoH1.5]ox

Point σs, arb. units σr , arb. units γ Hc, Oe

1 1.191 0.262 0.56 77

2 1.042 0.250 0.52 112

3 1.066 0.289 0.46 108

4 1.089 0.324 – 297
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Fig. 4. Cobalt segregation dynamics in the progress of the
oxidation of intact ZrCoH1.5 and the contact obtained after
hydrogen thermodesorption from the hydride.

Table 2.  Magnetic parameters of [Zr + ZrCo2]ox

Point σs, arb. units σr , arb. units Hc, Oe

1 1.097 0.295 128.5

2 1.072 0.373 143

3 1.079 0.397 436
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Fig. 5. Cobalt segregation and oxidation dynamics during
testing of a ZrCoH1.5 sample in air: (1) ZrCoH1.5 oxidation
in air in the temperature-programmed mode (heating at
0.47 K/s) (contact 1), (2) reduction of air-oxidized
ZrCoH1.5 in a hydrogen flow in the temperature-pro-
grammed mode (heating at 0.47 K/s) (contact 2), and (3)
oxidation of contact 2 in air in the temperature-programmed
mode (heating at 0.47 K/s) (contact 3).
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extended, a significant proportion of cobalt is converted
to the oxide by the end of the oxidative treatment.

In summary, the oxidation of [Zr + ZrCo2] is accom-
panied by a more significant rise in magnetization com-
pared to the precursor ZrCoH1.52; coarser Comet parti-
cles are produced. The oxidation of ZrCoH1.52 by air
results in higher magnetizations than the oxidation by
O2 + Ar (5/95), although the oxidation of [Zr + ZrCo2]
by air does not significantly differ from oxidation by an
O2 + Ar (5/95) mixture.
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